- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Minamide, Masashi (2)
-
Chan, Man‐Yau (1)
-
Chen, Xingchao (1)
-
Clothiaux, Eugene E. (1)
-
Darko, Justice (1)
-
Folsom, Larkin (1)
-
Greybush, Steven J. (1)
-
Hartman, Christopher M. (1)
-
Lu, Yinghui (1)
-
Nystrom, Robert G. (1)
-
Okazaki, Atsushi (1)
-
Ono, Masahiro (1)
-
Park, Hyoshin (1)
-
Ruppert, Jr., James H. (1)
-
Sieron, Scott B. (1)
-
Su, Hui (1)
-
Yao, Zhu (1)
-
Zhang, Fuqing (1)
-
Zhang, Yunji (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Lack of high‐resolution observations in the inner‐core of tropical cyclones remains a key issue when constructing an accurate initial state of the storm structure. The major implication of an improper initial state is the poor predictability of the future state of the storm. The size and associated hazard from strong winds at the inner‐core make it impossible to sample this region entirely. However, targeting regions of the inner‐core where forecasted atmospheric measurements have high uncertainty can significantly improve the accuracy of measurements for the initial state of the storm. This study provides a scheme for targeted high‐resolution observations for small Unmanned Aircraft Systems (sUAS) platforms (e.g., Coyote sUAS) to improve the estimates of the atmospheric measurement in the inner‐core structure. The benefit of observation is calculated based on the high‐fidelity state‐of‐the‐art hurricane ensemble data assimilation system. Potential locations with the mostinformativemeasurements are identified through exploration of various simulation‐based solutions depending on the state variables (e.g., pressure, temperature, wind speed, relative humidity) and a combined representation of those variables. A sampling‐based sUAS path planning algorithm considers energy usage when locating the regions of highly uncertain prediction of measurements, allowing sUAS to maximize the benefit of observation. Robustness analysis of our algorithm for multiple scenarios of sUAS drop and goal locations shows satisfactory performance against benchmark similar to current NOAA field campaign. With optimized sUAS observations, a data assimilation analysis shows significant improvements of up to 4% in the tropical cyclone structure estimates after resolving uncertainties at targeted locations.more » « less
-
Zhang, Yunji; Sieron, Scott B.; Lu, Yinghui; Chen, Xingchao; Nystrom, Robert G.; Minamide, Masashi; Chan, Man‐Yau; Hartman, Christopher M.; Yao, Zhu; Ruppert, Jr., James H.; et al (, Geophysical Research Letters)Abstract Ensemble‐based data assimilation of radar observations across inner‐core regions of tropical cyclones (TCs) in tandem with satellite all‐sky infrared (IR) radiances across the TC domain improves TC track and intensity forecasts. This study further investigates potential enhancements in TC track, intensity, and rainfall forecasts via assimilation of all‐sky microwave (MW) radiances using Hurricane Harvey (2017) as an example. Assimilating Global Precipitation Measurement constellation all‐sky MW radiances in addition to GOES‐16 all‐sky IR radiances reduces the forecast errors in the TC track, rapid intensification (RI), and peak intensity compared to assimilating all‐sky IR radiances alone, including a 24‐hr increase in forecast lead‐time for RI. Assimilating all‐sky MW radiances also improves Harvey's hydrometeor fields, which leads to improved forecasts of rainfall after Harvey's landfall. This study indicates that avenues exist for producing more accurate forecasts for TCs using available yet underutilized data, leading to better warnings of and preparedness for TC‐associated hazards in the future.more » « less
An official website of the United States government
